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Main Result
A discrete Schrödinger operator H : l2 → l2 with a potential

{P (n) ∈ R}n∈Z is defined by

H(φ)(n) = φ(n + 1) + φ(n− 1) + P (n)φ(n)

We can consider a few different models and their respective spec-

trum.

σ(H) = {E : H − E does not have a bounded inverse}

The Anderson Model is an operator with a potential P (n) de-

fined by a sequence of iid random variables, and the spectrum of

this model is known to be the Minkowski sum of [−2, 2] with the

support of the distribution, making it the union of a finite num-

ber of intervals. The spectrum of a discrete Schrödinger operator

with a periodic potential is also known to have a spectrum equal

to the union of a finite number of intervals. This work studies

the spectrum of the periodic Anderson-Bernoulli model, which

has a potential defined by a sequence of iid Bernoulli random

variables + a periodic background potential.

Theorem 1 (Main Result) The discrete Schrödinger cocycle with

potential defined by the sequence of distributions {ν(n)}

ν(n) =
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9.99B(p0) + 0 if n ≡ 0 mod 4

9.99B(p1) + 0.9 if n ≡ 1 mod 4

9.99B(p2)− 9.7 if n ≡ 2 mod 4

9.99B(p3) + 2 if n ≡ 3 mod 4

,

has a spectrum with infinitely many gaps in the spectrum. The

spectrum has dense interior.

Theorem 2 The periodic Anderson-Bernoulli model with a back-

ground potential of period 2 has a well-defined spectrum consist-

ing of at most 4 disjoint intervals.

Tools
• Define a transfer matrix AE(x) where E, x ∈ R by:

AE(x) =

[

E − x −1
1 0

]

.

• Given an ergodic discrete Schrödinger operator defined by

the dynamical system (Ω, T, µ) and f : Ω → R, define a

Schrödinger cocycle as:

(T,AE ◦ f ) : (Ω,R2) → (Ω,R2)

(ω,~v) 7→ (T (ω), AE(f (ω)) · ~v)

In their recent work Avila, Damanik, and Gorodetski showed that a discrete Schrödinger operator with a potential given by a sum of an ergodic potential defined by a dynamical system with a connected phase space, and a random potential has to have a spectrum

consisting of a finite number of intervals. This result does not apply to random discrete Schrödinger operators with periodic background. By applying results by Avila, Bocci, and Yoccoz on finitely generated semigroups of SL(2,R), I have constructed a potential that is

a sum of a random and periodic ones, such that the spectrum of the corresponding Schrödinger operator consists of the union of an infinite number of disjoint intervals. By examining the geometry of the hyperbolicity locus in SL(2,R)n, one can show the spectrum of

such operators must have dense interior.

Propositions
The first proposition equates the respective Schrödinger cocycle being

uniformly hyperbolic with a set of matrices being uniformly hyper-

bolic. The second proposition defines the spectrum in terms of whether

or not the cocycle is uniformly hyperbolic.

• Proposition 1 Given a discrete Schrödinger operator with random

potential plus a background periodic potential of period n defined

by {ν(i)}, the Schrödinger cocycle with energy E is uniformly hy-

perbolic if and only if the following set of matrices is uniformly

hyperbolic.

{AE(ξn−1) · AE(ξn−2) · · ·AE(ξ0)}ξi∈supp(ν(i))

• Theorem 3 (Johnson’s Theorem)

Given ergodic (Ω, T, µ), Ω is a compact metric space, T is a home-

omorphism, µ is a T -invariant measure with the support of the mea-

sure being Ω, and f : Ω → R is continuous, we have:

σas(H) = {E : (T,AE ◦ f ) is not uniformly hyperbolic}

Approach
The matrices in the set in Proposition 1 are defined by energy E. The

set is uniformly hyperbolic over an infinite number of disjoint intervals

of E similar to the example from Proposition 4.18 of Avila, Bochi, and

Yoccoz’s paper. The diagram below shows this by using the cone con-

dition. The circle depicts RP1, and the curved arrows depict the matri-

ces (resp. Mobius transformations) pointing from the stable eigenvec-

tor (resp. repelling point) to the unstable eigenvector (resp. attracting

point) for E ∈ (E0 − δ, E0) for E0 ≈ −0.6005.

Uniformly Hyperbolic Sets of
Matrices

If a set of matrices M is uniformly hyperbolic, then we can de-

fine the following:

• C ( RP1 consisting of a finite set of closed intervals such that

for all M ∈ M, the corresponding Mobius transformation M ′

satisfies the condition

M ′(C) ⊂ Int(C)

• 〈M〉 = {M : M =
∏n

i=1Mi, with Mi ∈ M}

• Skeleton SM ⊂ RP1 is the smallest closed set that is invariant

under action of all the matrices of M.

• M−1 = {M−1 : M ∈ M}

We have that

{N · uM : N ∈ 〈M〉, M ∈ M} = S

{uM ;M ∈ 〈M〉} = S

Over hyperbolicity locus in SL(2,R)n, the skeleton can be defined and is a subset of every possible cone. By using Theorem 4.1

of Avila, Bochi, and Yoccoz’s paper, as points in one of the connected locus approach the boundary, then the distance between

SM and SM−1 goes to zero, or there exists A ∈ M such that A → Id.
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Skeleton Example
A depiction of what the skeleton look like if the set {A,B}
has a principal cone.
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Assuming the spectral radius of the matrices are sufficiently

large, the skeleton is a Cantor set.

The Spectrum Details
Theorem 4 The spectrum is the closure of the union of infinitely many closed intervals with an interior.

For random models in question:

ΣAS =
⋃

V is periodic

σ(HV ), (1)

where the union ranges over all periodic realizations of the periodic Bernoulli-Anderson model.

Relevant Questions Addressed
Question 1 from Avila, Bochi, and Yoccoz’s 2008 paper asks if the boundaries of the connected components of the hyperbolicity

locus are disjoint. Details of this work imply a positive answer to this question. Progress in the direction of proving this provides

a different proof for Theorem 4.
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